Mary used the quadratic formula to find the zeros of the equation below. Select the correct zeros of the equation:3x^2 - 9x + 2 = 0Answer choices include:x = fraction numerator 9 plus-or-minus square root of 57 over denominator 6 end fractionx equals fraction numerator negative 9 plus-or-minus square root of 57 over denominator 2 end fractionx equals fraction numerator 9 plus-or-minus square root of 105 over denominator 2 end fractionx equals fraction numerator negative 9 plus-or-minus square root of 105 over denominator 6 end fraction

Respuesta :

We have the next quadratic function given:

[tex]3x^2-9x+2=0[/tex]

Mary used the next quadratic formula:

[tex]x=\frac{-b^\pm\sqrt{b^2-4ac}}{2a}[/tex]

Replace using the form ax²+bx+c

Where a= 3

b=-9

c=2

Then:

[tex]\begin{gathered} x=\frac{-\lparen-9)\pm\sqrt{\left(-9\right)^2-4\left(3\right)\left(2\right)}}{2\left(3\right)} \\ x=\frac{9\pm\sqrt[]{57}}{6}\frac{}{} \end{gathered}[/tex]

Therefore, the correct answer is "x = fraction numerator 9 plus-or-minus square root of 57 over denominator 6 end fraction"