Respuesta :

Given the triangle KLM, you can find the measure of angle L by using the Law of Sines. This states that:

[tex]\frac{sinA}{a}=\frac{sinB}{b}=\frac{sinC}{c}[/tex]

Where "a", "b" and "c" are sides of the triangle, and "A", "B", and "C" are the angles.

In this case, you can set up this equation:

[tex]\frac{sinK}{k}=\frac{sinL}{l}[/tex]

Knowing that:

[tex]\begin{gathered} m\angle K=22\text{\degree} \\ k=56 \\ l=26 \end{gathered}[/tex]

You can substitute values into the equation and solve for "L". Remember the use the Inverse Trigonometric Function Arcsine, in order to solve for the angle:

[tex]\frac{sin(22°)}{56}=\frac{sinL}{26}[/tex][tex]\frac{26\cdot sin(22°)}{56}=sinL[/tex][tex]sin^{-1}(\frac{26\cdot sin(22°)}{56})=L[/tex][tex]m\angle L\approx10°[/tex]

Hence, the answer is:

[tex]m\angle L\approx10°[/tex]