what is the answer and how do i solve it?

EXPLANATION
Since we have the expression:
[tex]\frac{x}{x^2+x-6}-\frac{2}{x+3}[/tex]First, we need to find the least common multiplier as follows:
Least common multiplier of x^2 + x - 6, x+3: (x-2)(x+3)
Ajust fractions based on the LCM:
[tex]=\frac{x}{\left(x-2\right)\left(x+3\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}[/tex][tex]\mathrm{Apply\: the\: fraction\: rule}\colon\quad \frac{a}{c}-\frac{b}{c}=\frac{a-b}{c}[/tex][tex]=\frac{x-2\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}[/tex][tex]Expand\text{ x-2(x-2)}[/tex][tex]=\frac{-x+4}{\left(x-2\right)\left(x+3\right)}[/tex]The final expression is as follows:
[tex]=\frac{-x+4}{(x-2)(x+3)}[/tex]