Respuesta :

approximatesThe equation of a line is given by

[tex]\begin{gathered} y=mx+c \\ m=\frac{change\text{ in y}}{change\text{ in x}}=\frac{y_2-y_1}{x_2-x_1}=\frac{y-y_1}{x-x_1} \end{gathered}[/tex]

Taking two points from the line of best fit

Point A(14,200) and Point B (18,400)

[tex]\begin{gathered} x_1=14;y_1=200;x_2=18;y_2=400 \\ \frac{y_2-y_1}{x_2-x_1}=\frac{y-y_1}{x-x_1} \\ \frac{400-200}{18-14}=\frac{y-200}{x-14} \\ \frac{200}{4}=\frac{y-200}{x-14} \\ \frac{50}{1}=\frac{y-200}{x-14} \\ y-200=50(x-14) \\ y-200=50x-700 \\ y=50x-700+200 \\ y=50x-500 \end{gathered}[/tex]

Hence, the equation that best approximate the trend line is y=50x-500