Respuesta :
Given:
Cost function is defined as,
[tex]\begin{gathered} C(x)=mx+b \\ m=\text{marginal cost} \\ b=\text{fixed cost} \end{gathered}[/tex]a) Fixed cost = $100, 50 items cost $1600.
The cost function is given as,
[tex]\begin{gathered} C=\text{Fixed cost+}x(\text{ production cost)} \\ x\text{ is number of items produced} \\ \text{Given that, }50\text{ items costs \$1600} \\ 1600=100\text{+50}(\text{ production cost)} \\ \text{production cost=}\frac{1600-100}{50} \\ \text{production cost}=30 \end{gathered}[/tex]So, the cost function is,
[tex]C=30x+100[/tex]b) Fixed cost = $400, 10 items cost $650.
[tex]\begin{gathered} 650=400+10p \\ 650-400=10p \\ p=25 \\ \text{ Cost function is,} \\ C=25x+400 \end{gathered}[/tex]c) Fixed cost= $1000, 40 items cost $2000 .
[tex]\begin{gathered} 2000=1000+40p \\ p=25 \\ C=25x+1000 \end{gathered}[/tex]d) Fixed cost = $8500, 75 items cost $11,875.
[tex]\begin{gathered} 11875=8500+75p \\ 11875-8500=75p \\ p=45 \\ C=45x+8500 \end{gathered}[/tex]e) Marginal cost= $50, 80 items cost $4500.
In this case we know the value of m = 50 .
Use the slope point form,
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ (x_1,y_1)=(80,4500) \\ y-4500=50(x-80) \\ y=50x-4000+4500 \\ y=50x+500 \\ C=50x+500 \end{gathered}[/tex]f) Marginal cost=$120, 100 items cost $15,800.
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ (x_1,y_1)=(100,15800) \\ y-15800=120(x-100) \\ y=120x-12000+15800 \\ y=120x+3800 \\ C=120x+3800 \end{gathered}[/tex]g) Marginal cost= $90,150 items cost $16,000.
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ (x_1,y_1)=(150,16000) \\ y-16000=90(x-150) \\ y=90x-13500+16000 \\ y=90x+2500 \\ C=90x+2500 \end{gathered}[/tex]h) Marginal cost = $120, 700 items cost $96,500
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ (x_1,y_1)=(700,96500) \\ y-96500=120(x-700) \\ y=120x-84000+96500 \\ y=120x+12500 \\ C=120x+12500 \end{gathered}[/tex]