Respuesta :

x = 11.125

STEP - BY - STEP EXPLANATION

What to do?

Solve the given equation.

Given:

log (2x+ 9) = 1+ log(x- 8)

To solve, we will follow the steps below:

Step 1

Re-arrange by subtracting log(x-8) from both-side of the equation.

[tex]log(2x+9)-log(x-8)=1[/tex]

Step 2

Apply the law of logarithm that is applicable to the given problem.

[tex]log\frac{(2x+9)}{(x-8)}=1[/tex]

Step 3

Replace 1 by log10

Step 4

[tex]log\frac{(2x+9)}{(x-8)}=log10[/tex]

Step 5

Cancel-out the log from both-side of the equation.

[tex]\frac{2x+9}{x-8}=10[/tex]

Step 6

Cross - multiply

[tex]2x+9=10(x-8)[/tex]

Step 7

Open the parenthesis.

[tex]2x+9=10x-80[/tex]

Step 8

Collect like term.

[tex]10x-2x=80+9[/tex][tex]8x=89[/tex]

Step 9

Divide both-side of the equation by 8

[tex]\frac{8x}{8}=\frac{89}{8}[/tex][tex]x=11.125[/tex]

Therefore, the value of x is 11.125