For a line to be parallel to another line, the slope will be the same
1st equation:
[tex]\begin{gathered} 2x\text{ - 5y - 8 = 0} \\ \text{making y the subject of formula:} \\ 2x\text{ - 8 = 5y} \\ y\text{ = }\frac{2x\text{ - 8}}{5} \\ y\text{ = }\frac{2x}{5}\text{ - }\frac{8}{5} \end{gathered}[/tex][tex]\begin{gathered} \text{equation of line:} \\ y\text{ = mx + b} \\ m\text{ = slope, b = y-intercept} \end{gathered}[/tex][tex]\begin{gathered} \text{comparing the given equation and equation of line:} \\ y\text{ = y} \\ m\text{ = 2/5} \\ b\text{ = -8/5} \end{gathered}[/tex]Since the slope of the first line = 2/5, the slope of the second line will also be 2/5
We would insert the slope and the given point into equation of line to get y-intercept of the second line:
[tex]\begin{gathered} \text{given point: (-7, 6) = (x, y)} \\ y\text{ = mx + b} \\ 6\text{ = }\frac{2}{5}(-7)\text{ + b} \\ 6\text{ = }\frac{-14}{5}\text{ + b} \\ 6\text{ + }\frac{14}{5}\text{ = b} \\ \frac{6(5)\text{ + 14}}{5}\text{ = b} \\ b\text{ = }\frac{44}{5} \end{gathered}[/tex]The equation for the line that passes through (-7, 6) and parallel to line 2x - 5y - 8 = 0:
[tex]\begin{gathered} y\text{ = mx + b} \\ y\text{ = }\frac{2}{5}x\text{ + }\frac{44}{5} \end{gathered}[/tex]