Given:
The mass of the first ball is,
[tex]m_1=4\text{ kg}[/tex]The initial velocity of the first ball towards West is,
[tex]u_1=25\text{ m/s}[/tex]The mass of thr second ball is,
[tex]m_2=15\text{ kg}[/tex]the second object is initially at rest.
The final velocity of the first ball is,
[tex]v_1=-8.0\text{ m/s}[/tex]we are taking West as positive.
Applying momentum conservation principle we can write,
[tex]m_1u_1+m_2\times0=m_1v_1+m_2v_2[/tex]Substituting the values we get,
[tex]\begin{gathered} 4\times25+0=4\times(-8.0)+15\times v_2 \\ v_2=\frac{100+32}{15} \\ v_2=8.8\text{ m/s} \end{gathered}[/tex]THe final velocity of the second ball is towards East and the magnitude is 8.8 m/s.
The impulse of the Second ball is,
[tex]\begin{gathered} I=m_2v_2-m_2\times0 \\ =15\times8.8 \\ =132\text{ kg.m/s} \end{gathered}[/tex]