Given the question
[tex]\log (\frac{x^2y^3}{z})[/tex]To resolve this, we can follow the steps below
Step1: Apply the logarithm rule
[tex]\log (\frac{x^2y^3}{z})=\log x^2+\log y^3-\log z[/tex]This will give=>
[tex]\log x^2+\log y^3-\log z=2\log x+3\log y-\log z[/tex]Since we have been given that
[tex]\begin{gathered} \log x=3 \\ \log y=2 \\ \log z=-1 \end{gathered}[/tex]Step2: Substitute the given values into the equation
[tex]2\log x+3\log y-\log z=2(3)+3(2)-(-1)[/tex]=>
[tex]6+6+1=13[/tex]Answer = 13