Given the graph in the attached image.
The red line represents f(x) and the blue line represents g(x);
From the graph;
The intercept, b, of f(x) is
[tex]b=56[/tex]
and the slope, m, of f(x) is;
[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1}=\frac{156-56}{400-0} \\ m=\frac{100}{400} \\ m=\frac{1}{4} \\ m=0.25 \end{gathered}[/tex]
So, f(x) is;
[tex]\begin{gathered} f(x)=mx+b \\ f\mleft(x\mright)=0.25x+56 \end{gathered}[/tex]
For g(x)
The y-intercept, b, of g(x) is;
[tex]b=0[/tex]
and the slope, m, of g(x) is;
[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1}=\frac{202.5-0}{450-0} \\ m=\frac{202.5}{450} \\ m=0.45 \end{gathered}[/tex]
So, g(x) is;
[tex]\begin{gathered} g(x)=mx+b \\ g(x)=0.45x+0 \\ g(x)=0.45x \end{gathered}[/tex]
To derive the solution, let us equate the two equations;
[tex]undefined[/tex]