Respuesta :

We are given that

[tex]y=-2+2\cos (2x-\frac{\pi}{3})[/tex]

Note: Given the cosine function

[tex]y=a\cos (bx-c)+d[/tex]

then

[tex]\begin{gathered} Amplitude=a \\ Period=\frac{2\pi}{b} \\ PhaseShift=\frac{c}{b} \\ VerticalShift=d \end{gathered}[/tex]

Comparing the question with what is written in the note

We have

[tex]\begin{gathered} a=2 \\ b=2 \\ c=\frac{\pi}{3} \\ d=-2 \end{gathered}[/tex]

We want to find

(a). Amplitude

From the given question, the amplitude (a) is

[tex]\begin{gathered} a=2 \\ Amplitude=2 \end{gathered}[/tex]

(b).Period

From the given question, the period is

[tex]\begin{gathered} Period=\frac{2\pi}{b} \\ Period=\frac{2\pi}{2} \\ Period=\pi \end{gathered}[/tex]

(c). Phase Shift

From the given question, the phase shift is

[tex]\begin{gathered} PhaseShift=\frac{c}{b} \\ PhaseShift=\frac{\pi}{3}\times\frac{1}{2} \\ PhaseShift=\frac{\pi}{6} \end{gathered}[/tex]