Respuesta :

the initial amount is 2000

the rate of change is 4%

t=time in years

Therefore we have the next exponential decay function

[tex]\begin{gathered} y=2000(1-0.04)^t \\ y=2000(0.96)t \end{gathered}[/tex]

Half of the population is y=1000 so we need to find find the value of t

[tex]1000=2000(0.96)^t[/tex]

we need to isolate the t

[tex]\frac{1000}{2000}=0.96^t[/tex]

[tex]\frac{1}{2}=0.96^t[/tex]

Using logarithms

[tex]\begin{gathered} \ln (\frac{1}{2})=\ln (0.96^t) \\ \ln (\frac{1}{2})=t\ln (0.96^t) \end{gathered}[/tex][tex]t=\frac{\ln (\frac{1}{2})}{\ln (0.96^{})}=16.98\approx17[/tex]

ANSWER

in 17 years the population will be reduced in half