Solution
- The base is a regular hexagon. This implies that it can be divided into equal triangles.
- These equal triangles can be depicted below:
- If each triangle subtends an angle α at the center of the hexagon, it means that we can find the value of α since all the α angles are subtended at the center of the hexagon using the sum of angles at a point which is 360 degrees.
- That is,
[tex]\begin{gathered} α=\frac{360}{6} \\ \\ α=60\degree \end{gathered}[/tex]
- We also know that regular hexagon is made up of 6 equilateral triangles.
- Thus, the formula for finding the area of an equilateral triangle is:
[tex]\begin{gathered} A=\frac{\sqrt{3}}{4}x^2 \\ where, \\ x=\text{ the length of 1 side.} \end{gathered}[/tex]
- Thus, the area of the hexagon is:
[tex]A=6\times\frac{\sqrt{3}}{4}x^2[/tex]
- With the above formula we can find the length of the regular hexagon as follows:
[tex]\begin{gathered} 40.6=6\times\frac{\sqrt{3}}{4}x^2 \\ \\ \therefore x=15.626947286066 \end{gathered}[/tex]
- The formula for the volume of a hexagonal pyramid is:
[tex]\begin{gathered} V=\frac{\sqrt{3}}{2}b^2\times h \\ where, \\ b=\text{ the base} \\ h=\text{ the height.} \end{gathered}[/tex]
- Thus, the volume of the pyramid is
[tex]\begin{gathered} V=\frac{\sqrt{3}}{2}\times15.626947286066^2\times3.7 \\ \\ V=782.49cm^3 \end{gathered}[/tex]