ANSWER:
7 s
STEP-BY-STEP EXPLANATION:
Given:
u = 0m/s
t = 5 sec
g = 9.8 m/s^2
The first thing is to calculate the height of the building, using the following formula:
[tex]\begin{gathered} s=ut+\frac{1}{2}gt^2 \\ \text{ Replacing} \\ s=0\cdot5+\frac{1}{2}\cdot9.8\cdot5^2 \\ s=122.5\text{ m} \end{gathered}[/tex]
Now, we apply the same formula, but we substitute the double value of the distance and solve for t, just like this:
[tex]\begin{gathered} 2\cdot122.5=\frac{1}{2}\cdot9.8\cdot\: t^2 \\ 9.8\cdot t^2=245\cdot2 \\ t^2=\frac{490}{9.8} \\ t=\sqrt[]{50} \\ t=7.07\text{ sec} \\ t\approx7\text{ sec} \end{gathered}[/tex]
The time it takes for the object to fall is 7 seconds.