Respuesta :

SOLUTION

The equation of a parabola in a vertex form is given

since the parabola is on the x-axis.

[tex]\begin{gathered} x=a(y-h)^2+k \\ \text{Where } \\ \text{Vertex}=(h,k) \end{gathered}[/tex]

From the diagram given, we have

[tex]\text{vertex}=(-4,-2)[/tex]

Substituting into the formula above, we have

[tex]\begin{gathered} x=a(y-h)^2+k \\ h=-4,k=-2 \end{gathered}[/tex]

We have

[tex]\begin{gathered} x=(y-(-2)^2-4 \\ x=(y+2)^2-4 \end{gathered}[/tex]

Since the parabola is a reflection from the parent function, then

[tex]a=-2[/tex]

The equation of the parabola becomes

[tex]x=-2(y+2)^2-4[/tex]

Answer; x = -2(y + 2)^2-4