Respuesta :

In part B we must perform the following operation:

[tex](5a^3+4a^2-3a+2)+(a^3-3a^2+3a-9)[/tex]

The key here is to group the terms according to the power of a they have:

[tex](5a^3+4a^2-3a+2)+(a^3-3a^2+3a-9)=(5a^3+a^3)+(4a^2-3a^2)+(-3a+3a)+(2-9)[/tex]

Then, we can use the distributive property of the multiplication but in reverse:

[tex]b\cdot a+c\cdot a=(b+c)\cdot a[/tex]

If we do this in each of the terms between parenthesis we get:

[tex]\begin{gathered} (5a^3+a^3)+(4a^2-3a^2)+(-3a+3a)+(2-9)= \\ =(5+1)a^3+(4-3)a^2+(-3+3)a-7 \\ (5+1)a^3+(4-3)a^2+(-3+3)a-7=6a^3+a^2-7 \end{gathered}[/tex]

Then the answer for part B is:

[tex]6a^3+a^2-7[/tex]

In part C we must simplify:

[tex](4y^3-2y+9)-(2y^3-3y^2+4y+7)[/tex]

Here is important to remember that a negative sign before a parenthesis means that you have to change the sign of all the terms inside it. Then we have:

[tex](4y^3-2y+9)-(2y^3-3y^2+4y+7)=4y^3-2y+9-2y^3+3y^2-4y-7[/tex]

Now we can do the same thing we did in part B, we group the terms according to the powers of y:

[tex]4y^3-2y+9-2y^3+3y^2-4y-7=(4y^3-2y^3)+3y^2+(-2y-4y)+(9-7)[/tex]

Then we apply the distributive property in reverse:

[tex]\begin{gathered} (4y^3-2y^3)+3y^2+(-2y-4y)+(9-7)=(4-2)y^3+3y^2+(-2-4)y+2 \\ (4-2)y^3+3y^2+(-2-4)y+2=2y^3+3y^2-6y+2 \end{gathered}[/tex]

Then the answer for part C is:

[tex]2y^3+3y^2-6y+2[/tex]