Find the sum of the first 7 terms of the following sequence. Round to the nearest hundredth if necessary.5,−2,45,...5,−2, 54 ,...Sum of a finite geometric series:Sum of a finite geometric series:Sn=a1−a1rn1−rS n = 1−ra 1 −a 1 r n

Solution:
Given:
[tex]5,-2,\frac{4}{5},\ldots[/tex]To get the sum of the first 7 terms, the formula below is used;
[tex]S_n=\frac{a_1-a_1r^n}{1-r}[/tex]where;
[tex]\begin{gathered} n=7 \\ a_1\text{ is the first term = 5} \\ r\text{ is the co}mmon\text{ ratio=}\frac{-2}{5} \end{gathered}[/tex]Hence,
[tex]\begin{gathered} S_n=\frac{a_1-a_1r^n}{1-r} \\ S_7=\frac{5-5(-\frac{2}{5})^7}{1-(-\frac{2}{5})} \\ S_7=\frac{5-5(-0.4)^7}{1+\frac{2}{5}} \\ S_7=\frac{5-5(-0.0016384)}{1+0.4} \\ S_7=\frac{5+0.008192}{1.4} \\ S_7=\frac{5.008192}{1.4} \\ S_7=3.57728 \end{gathered}[/tex]Therefore, the sum of the first 7 terms is 3.57728