if AC equals x + 3 and DB equals 3x - 19 find a CFA E equals 3x + 3 + E C equals 5x - 15 find a c d equals 50x - 7 + 80 equals 4x + 9 find DB

Respuesta :

2) If DB = 27 the we can replace that:

[tex]27=3x-19[/tex]

and we can solve for x

[tex]\begin{gathered} 3x=27-19 \\ 3x=8 \\ x=\frac{8}{3} \end{gathered}[/tex]

now we can replace x in the equation for AC:

[tex]\begin{gathered} AC=x+3 \\ AC=\frac{8}{3}+3 \\ AC=\frac{8}{3}+\frac{9}{3} \\ AC=\frac{17}{3} \end{gathered}[/tex]

3) we have that:

[tex]\begin{gathered} AE=3x+3 \\ EC=5x-15 \end{gathered}[/tex]

So the segment AC will be the sum of the segments:

[tex]\begin{gathered} AC=AE+EC \\ AC=3x+3+5x-15 \\ AC=8x-12 \end{gathered}[/tex]

and we also know that

[tex]\begin{gathered} x=\frac{8}{3} \\ \text{then} \\ AC=\frac{64}{3}-\frac{36}{3} \\ AC=\frac{28}{3} \end{gathered}[/tex]

3) we have that:

[tex]\begin{gathered} DE=6x-7 \\ AE=4x+6 \end{gathered}[/tex]