Find the exact length of the arc intercepted by a central angle on a circle of radius . Then round to the nearest tenth of a unit.

Given:
Angle subtended at the center = 135 degrees
radius (r) = 4 yd
Solution
The formula for the length (l) of an arc is given as:
[tex]\begin{gathered} l\text{ = }\frac{\phi}{360^0}\text{ }\times\text{ 2}\pi r \\ \text{where }\phi\text{ is the angle subtend}ed\text{ at the center} \end{gathered}[/tex]When we substitute the given parameters, we can find the length (l) of the arc:
[tex]\begin{gathered} l\text{ = }\frac{135}{360}\text{ }\times\text{ 2 }\times\text{ }\pi\text{ }\times\text{ 4} \\ =3\pi \\ \approx\text{ 9.4 yd (nearest tenth)} \end{gathered}[/tex]Answer: 9.4 yd or 3.0 pi