Respuesta :

Answer:

The fraction form of the repeating decimal is;

[tex]\frac{2}{9}[/tex]

Explanation:

We want to express the repeating decimal 0.2 (2 repeating) as a fraction.

let x represent the fraction;

[tex]\begin{gathered} x=0.2222\ldots \\ 10x=2.222\ldots \end{gathered}[/tex]

Then subtract x from 10x;

[tex]\begin{gathered} 10x-x=2.222\ldots-0.222\ldots \\ 9x=2.0 \end{gathered}[/tex]

Then we can divide both sides by the coefficient of x;

[tex]\begin{gathered} \frac{9x}{9}=\frac{2}{9} \\ x=\frac{2}{9} \end{gathered}[/tex]

Therefore, the fraction form of the repeating decimal is;

[tex]\frac{2}{9}[/tex]