Respuesta :

Here, we are given a 45°-45°-90° triangle.

Let's find the length of the legs.

A 45°-45°-90° triangle is an isosceles triangle, and the two legs of an isosceles triangle are of equal lengths.

To find the length of each leg apply the formula:

[tex]c=a\sqrt[]{2}[/tex]

Where;

c = 12

Thus, we have:

[tex]12=a\sqrt[]{2}[/tex]

Solve for a:

Divide both sides by √2

[tex]\begin{gathered} \frac{12}{\sqrt[]{2}}=\frac{a\sqrt[]{2}}{\sqrt[]{2}} \\ \\ \frac{12}{\sqrt[]{2}}=a \\ \\ a=\frac{12}{\sqrt[]{2}} \\ \\ \text{Simplify the denominator:} \\ a=\frac{12}{\sqrt[]{2}}\ast\frac{\sqrt[]{2}}{\sqrt[]{2}} \\ \\ a=\frac{12\sqrt[]{2}}{2} \\ \\ a=6\sqrt[]{2} \end{gathered}[/tex]

Therefore, the length of each leg in radical form is 6√2

ANSWER:

[tex]6\text{ }\sqrt[]{2}[/tex]