Step 1
Plot a graph with the given table.
Step 2
Calculate r, the correlation coefficient between the two variables.
[tex]\begin{gathered} \text{From the graph,} \\ r\text{ = }-0.839 \end{gathered}[/tex]
Step 3
Interprete the value of r
[tex]\text{The association is a strong and negative relationship}[/tex]
Step 3
Compute the regression line for predicting price from mileage
[tex]\hat{y}=-0.118136x+17688.4[/tex]
Step 4
Predict the price of a car with 30,000 miles
[tex]\begin{gathered} \hat{y}=-0.118136(30000)+17688.4 \\ \hat{y}=-3,544.08+17688.4 \\ \hat{y}=\text{\$}14,144.32 \end{gathered}[/tex]
Step 5
[tex]\begin{gathered} \hat{y}=-0.118136(43000)\text{ + 17688.4} \\ \hat{y}=-5079.848+17688.4 \\ \hat{y}=\text{\$}12608.552\text{ } \\ \hat{y}\approx\text{\$12608.55} \\ \text{The given price for the mileage of 43000 is \$}14000 \\ \text{Therefore, the student with 43000 mileage on it will have a higher price than the one predicted by the regression line.} \end{gathered}[/tex]