We know that
• It starts from rest. (The initial velocity is zero).
,• The acceleration rate is 0.13 m/s^2.
,• The distance covered is 344 m.
To find the magnitude of the boat's final velocity, we have to use the following formula.
[tex]v^2_f=v^2_0+2ad[/tex]Let's use the given magnitudes.
[tex]\begin{gathered} v^2_f=0^2+2(0.13(\frac{m}{s^2}))(344m) \\ v^2_f=89.44(\frac{m^2}{s^2}) \\ v_f=\sqrt[]{89.44(\frac{m^2}{s^2})} \\ v_f\approx9.46(\frac{m}{s}) \end{gathered}[/tex]Now, to find the time it takes the boat to travel this distance, we use the following formula.
[tex]d=v_0\cdot t+\frac{1}{2}at^2[/tex]Using the given magnitudes, we have the following.
[tex]344m=\frac{1}{2}(0.13(\frac{m}{s^2}))t^2[/tex]Let's solve for t.
[tex]\begin{gathered} t=\sqrt[]{\frac{2\cdot344m}{0.13(\frac{m}{s^2})}} \\ t=\sqrt[]{\frac{688m}{0.13}}\sec \\ t\approx72.75\sec \end{gathered}[/tex]