(1 point) A variable of a population has a mean of I = 250 and a standard deviation of o = 49.

Solution
Question 1a:
- The population mean and sample mean are approximately the same in theory. The only difference is that the distribution of the sample will be wider due to a larger uncertainty caused by having less data to work with.
- Thus, we have:
[tex]\begin{gathered} \text{ Sample Mean:} \\ 250 \\ \\ \text{ Standard Deviation:} \\ \frac{\sigma}{\sqrt{n}}=\frac{49}{\sqrt{49}}=\frac{49}{7}=7 \\ \end{gathered}[/tex]Question 1b:
- The assumption is that the distribution is a normal distribution (OPTION C)
Question 1c:
Yes, the sampling distribution of the sample mean is always normal (OPTION B). This is in accordance with the central limit theorem.