Given that the triangles are similar, then their corresponding sides are in proportion, that is,
[tex]\frac{AB}{JK}=\frac{BX}{KY}[/tex]Substituting with data and solving for BX:
[tex]\begin{gathered} \frac{32}{10}=\frac{BX}{6} \\ 3.2=\frac{BX}{6} \\ \text{3}.2\cdot6=BX \\ 19.2=BX \end{gathered}[/tex]