Respuesta :

Given the fucntion:

f(x) = tanx

Let's graph the function and input the correct values in the box.

• To find the y-intercept of the function, input 0 for x and solve:

[tex]\begin{gathered} f(0)=\tan 0 \\ \\ f(0)=0 \end{gathered}[/tex]

Therefore, the y-intercept is:

(0, 0)

• The period of the function:

The fundamental period of a tangent function is π.

Now, let's find points on the graph:

Therefore, the points are:

[tex]\mleft(-\frac{\pi}{3},-\sqrt{3}\mright),\mleft(-\frac{\pi}{4},-1\mright),\mleft(0,0\mright),\mleft(\frac{\pi}{4},1\mright),\mleft(\frac{\pi}{3},\sqrt{3}\mright)[/tex]

ANSWER:

The tangent function's period is π . The y-intercept of the function is (0, 0).

The points are:

[tex](-\frac{\pi}{3},-\sqrt[]{3}),(-\frac{\pi}{4},-1),(0,0),(\frac{\pi}{4},1),(\frac{\pi}{3},\sqrt[]{3})[/tex]

Ver imagen HaniaW292938