Respuesta :

Answer:

Completing the table we have;

Explanation:

Given the table in the attached image, we want to complete the table;

[tex]\text{Interest is 1\% compounded monthly}[/tex]

For period 1;

simple interest;

[tex]i_1=Prt=100\times0.01\times1=\text{ \$1.00}[/tex]

Compound interest;

[tex]\begin{gathered} f_1=P(1+\frac{r}{n})^{nt}=100(1+\frac{1}{12})^{1(12)}=\text{ \$}101.00 \\ \text{ Interest = }101.00-100=\text{ \$1.00} \end{gathered}[/tex]

For period 2;

simple interest;

[tex]i_2=Prt=100\times0.01\times1=\text{ \$1.00}[/tex]

compound interest;

[tex]\begin{gathered} f_2=P(1+\frac{r}{n})^{nt} \\ P=f_1=101.00 \\ =101(1+\frac{1}{12})^{1(12)}=\text{ \$}102.01 \\ \text{Interest}=102.01-101=\text{ \$}1.01 \end{gathered}[/tex]

Total interest

simple interest;

[tex]i_t=i_1+i_2=1+1=\text{ \$2.00}[/tex]

Compound Interest;

[tex]\text{ Total interest}=1.00+1.01=\text{ \$2.01}[/tex]

Therefore, completing the table we have;

Ver imagen TreyvionO730094