A country's population in 1994 was 182 million.In 2002 it was 186 million. Estimatethe population in 2004 using the exponentialgrowth formula. Round your answer to thenearest million.

A countrys population in 1994 was 182 millionIn 2002 it was 186 million Estimatethe population in 2004 using the exponentialgrowth formula Round your answer to class=

Respuesta :

we have the exponential formula

[tex]P=Ae^{(kt)}[/tex]

so

we have

A=182 million ------> initial value (value of P when the value of t=0)

The year 1994 is when the value ot t=0

so

year 2002 -----> t=2002-1994=8 years

For t=8 years, P=186 million

substitute the value of A in the formula

[tex]P=182e^{(kt)}[/tex]

Now

substitute the values of t=8 years, P=186 million

[tex]\begin{gathered} 186=182e^{(8k)} \\ e^{(8k)}=\frac{186}{182} \\ \text{apply ln both sides} \\ 8k=\ln (\frac{186}{182}) \\ k=0.0027 \end{gathered}[/tex]

the formula is equal to

[tex]P=182e^{(0.0027t)}[/tex]

Estimate the population in 2004

t=2004-1994=10 years

substitute the value of t in the formula

[tex]\begin{gathered} P=182e^{(0.0027\cdot10)} \\ P=187 \end{gathered}[/tex]

therefore

the answer is 187 million