Respuesta :

The law of cosines is defined as follows:

[tex]a^2=b^2+c^2-2bc\cos A[/tex]

For the given triangle

a=AC=8

b=AB=14

c=BC=11

∠A=∠B=?

-Replace the lengths of the sides on the expression

[tex]8^2=14^2+11^2-2\cdot14\cdot11\cdot\cos B[/tex]

-Solve the exponents and the multiplication

[tex]\begin{gathered} 64=196+121-308\cos B \\ 64=317-308\cos B \end{gathered}[/tex]

-Pass 317 to the left side of the expression by applying the opposite operation to both sides of it

[tex]\begin{gathered} 64-317=317-317-308\cos B \\ -253=-308\cos B \end{gathered}[/tex]

-Divide both sides by -308

[tex]\begin{gathered} -\frac{253}{-308}=-\frac{308\cos B}{-308} \\ \frac{23}{28}=\cos B \end{gathered}[/tex]

-Apply the inverse cosine to both sides of the expression to determine the measure of ∠B

[tex]\begin{gathered} \cos ^{-1}\frac{23}{28}=\cos ^{-1}(\cos B) \\ 34.77º=B \end{gathered}[/tex]

The measure of ∠B is 34.77º