We would begin by determining the slope of the line given;
[tex]3x+2y=6[/tex]To determine the slope, we would have to express the equation of the line in slope-intercept form as follows;
[tex]y=mx+b[/tex]Therefore, we need to make y the subject of the equation as shown below;
[tex]\begin{gathered} 3x+2y=6 \\ \text{Subtract 3x from both sides of the equation} \\ 2y=6-3x \\ \text{Divide both sides by 2 } \\ \frac{2y}{2}=\frac{6-3x}{2} \\ y=\frac{6}{2}-\frac{3x}{2} \\ y=3-\frac{3}{2}x \end{gathered}[/tex]The equation in slope-intercept form appears as shown above. Note that the slope is given as the coefficient of x.
Note alo that the slope of a line perpendicular to this one would be a "negative inverse" of the one given.
If the slope of this line is
[tex]-\frac{3}{2}[/tex]Then, the inverse would be
[tex]-\frac{2}{3}[/tex]The negative of the inverse therefore is;
[tex]\begin{gathered} (-1)\times-\frac{2}{3} \\ =\frac{2}{3} \end{gathered}[/tex]The answer therefore is option D