Respuesta :

Given:

There are given the expression:

[tex]\frac{4}{x+2}-\frac{5}{x}=1[/tex]

Explanation:

To find the value of x that is equal to 0, we need to perform LCM in the denominator and then find the value for x:

Then,

From the given expression:

[tex]\begin{gathered} \frac{4}{x+2}-\frac{5}{x}=1 \\ \frac{4x-5(x+2)}{x(x+2)}=1 \end{gathered}[/tex]

Then,

According to the question, the values at least one denominator is equal to .

So,

[tex]\begin{gathered} x(x+2)=0 \\ x=0 \\ x+2=0 \\ x=-2 \end{gathered}[/tex]

Final answer:

Hence, the value of x is shown below:

[tex]x\ne0,-2[/tex]