Respuesta :

ANSWER :

The answer is B. y = (x + 4)^2 + 9

EXPLANATION :

From the problem, we have :

[tex]y=x^2+8x+25[/tex]

Group the terms in which the constant term and the terms with variables are separated.

[tex]y=(x^2+8x)+(25)[/tex]

add and subtract a variable m to the parenthesis to maintain equivalency.

[tex]y=(x^2+8x+m)+(25-m)[/tex]

Calculate the value of m using b^2/4a^2 with a = 1 and b = 8

[tex]m=\frac{b^2}{4a^2}=\frac{8^2}{4(1^2)}=16[/tex]

Then :

[tex]\begin{gathered} y=(x^2+8x+16)+(25-16) \\ y=(x^2+8x+16)+(9) \end{gathered}[/tex]

The first parenthesis will be a perfect square trinomial.

Factor and simplify :

[tex]\begin{gathered} y=(x^2+8x+16)+9 \\ y=(x+4)^2+9 \end{gathered}[/tex]