Respuesta :

Explanation

First triangle

Since it is a right triangle, we can use the trigonometric ratio cos(θ) to find the length c.

[tex]\cos(\theta)=\frac{\text{ Adjacent side}}{\text{ Hypotenuse}}[/tex]

So, we have:

[tex]\begin{gathered} \cos(\theta)=\frac{\text{ Adjacent side}}{\text{ Hypotenuse}} \\ \cos(45°)=\frac{c}{7} \\ \text{ Multiply by 7 from both sides} \\ \cos(45\degree)\cdot7=\frac{c}{7}\cdot7 \\ 7\cos(45\degree)=c \\ \frac{7\sqrt{2}}{2}=c \end{gathered}[/tex]

Second triangle

Since it is a right triangle, we can use the trigonometric ratio cos(θ) to find the length a.

So, we have:

[tex]\begin{gathered} \cos(\theta)=\frac{\text{ Adjacent side}}{\text{ Hypotenuse}} \\ \cos(60°)=\frac{a}{2} \\ \text{ Multiply by 2 from both sides} \\ \cos(60°)\cdot2=\frac{a}{2}\cdot2 \\ 2\cos(60\degree)=a \\ 2\cdot\frac{1}{2}=a \\ 1=a \end{gathered}[/tex]Answer[tex]\begin{gathered} c=\frac{7\sqrt{2}}{2} \\ a=1 \end{gathered}[/tex]

Ver imagen IsomU317610
Ver imagen IsomU317610