Respuesta :

as the rate of company B is greater, the company B will reach the top first

Explanation

to solve this we can find the rate of each company and then compare

let

[tex]rate=\frac{finished\text{ length of construction}}{time\text{ taken}}[/tex]

so

Step 1

convert the mixed number into fractions

remember how

[tex]a\frac{b}{c}=\frac{(a*c)+b}{c}[/tex]

so

[tex]\begin{gathered} 5\text{ }\frac{1}{2}=\frac{(5*2)+1}{2}=\frac{11}{2} \\ 3\text{ }\frac{1}{2}=\frac{(3*2)+1}{2}=\frac{7}{2} \end{gathered}[/tex]

Step 2

Find the rate of each company

A) Company A

replace

[tex]\begin{gathered} rate=\frac{finished\text{ length of construction}}{time\text{ taken}} \\ rate_A=\frac{550}{\frac{11}{2}}=\frac{1100}{11}=100\text{ ft per month} \end{gathered}[/tex]

B) Company B

[tex]\begin{gathered} rate=\frac{finished\text{ length of construction}}{time\text{ taken}} \\ rate_B=\frac{385}{\frac{7}{2}}=\frac{770}{7}=110\text{ ft per month} \end{gathered}[/tex]

Step 3

finally, compare

[tex]\begin{gathered} 110\text{ ft per month }>100\text{ ft per month} \\ hence \\ rate_B>rate_A \end{gathered}[/tex]

as the rate of company B is greater, the company B will reach the top first