The given equation is
[tex]1-\frac{9}{5x}=\frac{8}{6}[/tex]Adding -1 on both sides, we get
[tex]1-\frac{9}{5x}-1=\frac{8}{6}-1[/tex][tex]-\frac{9}{5x}=\frac{8}{6}-1[/tex][tex]\text{Use 1=}\frac{6}{6}\text{ as follows.}[/tex][tex]-\frac{9}{5x}=\frac{8}{6}-\frac{6}{6}[/tex][tex]-\frac{9}{5x}=\frac{8-6}{6}[/tex][tex]-\frac{9}{5x}=\frac{2}{6}[/tex][tex]-\frac{9}{5x}=\frac{1}{3}[/tex]Using the cross-product method, we get
[tex]-9\times3=5x[/tex][tex]-27=5x[/tex]Dividing by 5 into both sides, we get
[tex]-\frac{27}{5}=\frac{5x}{5}[/tex][tex]x=-\frac{27}{5}=-5.4[/tex]Hence the required answer is x=-5.4.