114 minutes
Explanation
Step 1
find the rate of production of each machine (cans per minute)
so
a)The newer machine:
[tex]\begin{gathered} rate=\frac{cans\text{ }}{time} \\ rate_1=\frac{5700\text{ cans}}{190\text{ minutes}}=30\text{ }\frac{cans}{minute} \end{gathered}[/tex]b)the older machine:
[tex]\begin{gathered} rate=\frac{cans\text{ }}{time} \\ rate_2=\frac{5700\text{ cans}}{285\text{ minutes}}=20\text{ }\frac{cans}{minute} \end{gathered}[/tex]Step 2
Add the rates together to determine their combined
[tex]\begin{gathered} rate_{total}=rate_1+rate_2 \\ rate_{total}=30\text{ }\frac{cans}{minute}+20\frac{cans}{m\imaginaryI nute} \\ rate_{total}=50\text{ }\frac{cans}{minute} \end{gathered}[/tex]so, the total rate( both machine working ) is 50 cans per minute
Step 3
finally, to find the time to produce 5700 cans, divide the total cans by the rate, so
[tex]\begin{gathered} time=\frac{number\text{ of cans}}{rate} \\ time=\frac{5700\text{ cans}}{50\frac{cans}{minute}}=114minutes \\ time=\text{ 114 minutes} \end{gathered}[/tex]therefore, the answer is 114 minutes
I hope this helps you