The formula to obtain the angle of rotation is as follows:
[tex]\cot 2\theta=\frac{A-C}{B}[/tex]Compare the given equation to the general equation of a conic.
[tex]Ax^2+Bxy+Cy^2+Dx+Ey+F=0[/tex]Thus, the values of A, B, and C are as follows.
[tex]\begin{gathered} A=32 \\ B=50 \\ C=7 \end{gathered}[/tex]Substitute the values into the equation.
[tex]\begin{gathered} \cot 2\theta=\frac{32-7}{50} \\ \cot 2\theta=\frac{25}{50} \\ \cot 2\theta=\frac{1}{2} \end{gathered}[/tex]Find the value of the θ.
[tex]\begin{gathered} \frac{1}{\tan 2\theta}=\frac{1}{2} \\ \tan 2\theta=2 \\ 2\theta=\tan ^{-1}(2) \\ 2\theta\approx63.4349 \\ \theta\approx31.7 \end{gathered}[/tex]