Factoring
Factor the expression:
[tex]72b^2z+96b^2h+90xbz+120xbh[/tex]Divide the expression into two halves:
[tex](72b^2z+96b^2h)+(90xbz+120xbh)[/tex]Factor b^2 from the first group and xb from the second group:
[tex]b^2(72z+96h)+xb(90z+120h)[/tex]Now find the greatest common multiple of 72 and 96:
72= 2*2*2*3*3
96=2*2*2*2*2*2*3
Now we take the common factors with their least number of repetitions:
GCF=2*2*2*3=24
Now we find the GCF of 90 and 120:
90=2*3*3*5
120=2*2*2*3*5
GCF=2*3*5=30
Taking the GCF of each group:
[tex]\begin{gathered} b^224(3z+4h)+xb30(3z+4h) \\ =24b^2(3z+4h)+30xb(3z+4h) \end{gathered}[/tex]Now we finally take out 3z+4h from both groups:
[tex]\mleft(3z+4h\mright)(24b^2+30xb)[/tex]This last expression can be further factored by taking out 6b from both terms:
[tex]6b(3z+4h)(4b+5x)[/tex]This is the final expression factored as much as possible