Find the percent increase in volume when 1 foot is added to each dimension of the prism. Round your answer to the nearest tenth of a percent.7 ft10 ft86 ft

Find the percent increase in volume when 1 foot is added to each dimension of the prism Round your answer to the nearest tenth of a percent7 ft10 ft86 ft class=

Respuesta :

Solution

Step 1

The volume of a triangular prism = Cross-sectional area x Length

Step 2

[tex]\begin{gathered} Cross\text{ sectional area = area of the triangle} \\ Base\text{ = 6ft} \\ Height\text{ = 7ft} \\ Cross\text{ sectional area = }\frac{1}{2}\times\text{ 7 }\times\text{ 6 = 21 ft}^2 \\ Volume\text{ = 21 }\times\text{ 10 = 210 ft}^3 \end{gathered}[/tex]

Step 3:

When 1 foot is added to each dimension of the prism.

The new dimensions becomes Base = 7, Height = 8 and length = 11

[tex]\begin{gathered} \text{Cross-sectional area = }\frac{1}{2}\text{ }\times\text{ 7 }\times\text{ 8 = 28 ft}^2 \\ Length\text{ = 11 ft} \\ Volume\text{ = 28 }\times\text{ 11 = 308 ft}^3 \end{gathered}[/tex]

Step 4

Find the percent increase in volume

[tex]\begin{gathered} \text{Percent increase in volume = }\frac{308\text{ - 210}}{210}\text{ }\times\text{ 100\%} \\ \text{= }\frac{98}{210}\text{ }\times100 \\ \text{= 46.7} \end{gathered}[/tex]

Final answer

46.7