Respuesta :

The given geometric series is

[tex]120-80+\frac{160}{3}-\frac{320}{9}+\cdots[/tex]

In a geometric series, there is a common ratio between consecutive terms defined as

[tex]r=\frac{-80_{}}{120_{}}=-\frac{2}{3}[/tex]

The sum of the first n terms of a geometric series is given by

[tex]S_n=\frac{a(1-r^n)}{1-r},r<1[/tex]

Where a is the first term.

From the given series

a = 120

Hence, the sum of the first 8 terms is

[tex]S_8=\frac{120(1-(-\frac{2}{3})^8)}{1-(-\frac{2}{3})}[/tex]

Simplify the brackets

[tex]S_8=\frac{120(1-\frac{2^8}{3^8}^{})}{1+\frac{2}{3}}[/tex]

Simplify further

[tex]\begin{gathered} S_8=\frac{120(1-\frac{256}{6561})}{\frac{3+2}{3}} \\ S_8=\frac{120(\frac{6561-256}{6561})}{\frac{5}{3}} \\ S_8=\frac{120(\frac{6305}{6561})}{\frac{5}{3}} \\ S_8=\frac{120\times6305}{6561}\div\frac{5}{3} \\ S_8=\frac{120\times6305}{6561}\times\frac{3}{5} \\ S_8=\frac{120\times6305}{6561}\times\frac{3}{5} \\ S_8=\frac{8\times6305}{729} \\ S_8=\frac{50440}{729} \end{gathered}[/tex]

Therefore, the sum of the first 8 terms is

[tex]\frac{50440}{729}[/tex]