Answer:
The sum to infinity of the given series is;
[tex]S_{\infty}=21\frac{1}{3}[/tex]Explanation:
From the given series, we can see that the series is a Geometric Progression (GP) because it has a common ratio;
[tex]\begin{gathered} r=\frac{4}{16}=\frac{1}{4} \\ r=0.25 \end{gathered}[/tex]The formula to calculate the sum to infinity of a GP is;
[tex]\begin{gathered} S_{\infty}=\frac{a}{1-r} \\ \text{For;} \\ 0Where;a = first term = 16
r = common ratio = 0.25.
substituting we have;
[tex]\begin{gathered} S_{\infty}=\frac{16}{1-0.25}=\frac{16}{0.75} \\ S_{\infty}=21\frac{1}{3} \\ S_{\infty}=21.33 \end{gathered}[/tex]Therefore, the sum to infinity of the given series is;
[tex]S_{\infty}=21\frac{1}{3}[/tex]