Respuesta :

Answer:

The sum to infinity of the given series is;

[tex]S_{\infty}=21\frac{1}{3}[/tex]

Explanation:

From the given series, we can see that the series is a Geometric Progression (GP) because it has a common ratio;

[tex]\begin{gathered} r=\frac{4}{16}=\frac{1}{4} \\ r=0.25 \end{gathered}[/tex]

The formula to calculate the sum to infinity of a GP is;

[tex]\begin{gathered} S_{\infty}=\frac{a}{1-r} \\ \text{For;} \\ 0Where;

a = first term = 16

r = common ratio = 0.25.

substituting we have;

[tex]\begin{gathered} S_{\infty}=\frac{16}{1-0.25}=\frac{16}{0.75} \\ S_{\infty}=21\frac{1}{3} \\ S_{\infty}=21.33 \end{gathered}[/tex]

Therefore, the sum to infinity of the given series is;

[tex]S_{\infty}=21\frac{1}{3}[/tex]