Let f(x) = 2x² + 14x – 16 and g(x) = x+8. Perform the function operation and then find the domain of the result.(x) = (simplify your answer.)

We need to find the following division of the functions f(x) and g(x):
[tex]\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\frac{2x^2+14x-16}{x+8}[/tex]We can note that the numerator can be rewritten as
[tex]2x^2+14x-16=2(x^2+7x-8)=2(x+8)(x-1)[/tex]Then the division can be written as:
[tex]\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\frac{2(x+8)(x-1)}{x+8}[/tex]From this result, we can cancel out the term (x+8) from both sides and get,
[tex]\frac{f}{g}(x)=\frac{f(x)}{g(x)}=2(x-1)[/tex]Therefore, the result of the division is:
[tex]\frac{f}{g}(x)=2(x-1)[/tex]which domain is all real numbers:
[tex]x\in(-\infty,\infty)[/tex]