Given:
The inductance is,
[tex]\begin{gathered} L=9\text{ mH} \\ =9\times10^{-3}\text{ H} \end{gathered}[/tex]The radio frequency is,
[tex]\begin{gathered} f=66\text{ kHz} \\ =66\times10^3\text{ Hz} \end{gathered}[/tex]To find:
value of the variable capacitor, in picofarads
Explanation:
The frequency of the AM is,
[tex]\begin{gathered} f=\frac{1}{2\pi\sqrt{LC}} \\ \end{gathered}[/tex]Substituting the values we get,
[tex]\begin{gathered} 66\times10^3=\frac{1}{2\pi\sqrt{9\times10^{-3}\times C}} \\ \sqrt{9\times10^{-3}\times C}=\frac{1}{2\pi\times66\times10^3} \\ \sqrt{9\times10^{-3}\times C}=2.41\times10^{-6} \\ 9\times10^{-3}\times C=5.81\times10^{-12} \\ C=6.45\times10^{-10} \\ C=645\times10^{-12}\text{ F} \\ C=645\text{ pF} \end{gathered}[/tex]Hence, the capacitance is 645 pF.