Respuesta :

Volume of the top of the prism: 460 cm^3

Volume of the bottom of the prism: 1 768 cm^3

Total volume of the figure: 2 228 cm^3

Explanation:

Volume of the top of the prism:

. Since it is a prism from trapezoid

. . Volume = Area of the trapezium base * heights between trapezium ends

[tex]\begin{gathered} Area\text{ of a trapezium base}=\frac{top\text{ base+bottom base}}{2}*height \\ ...\text{ =}\frac{6+17}{2}*(22-17) \\ ...=\frac{23}{2}*5 \\ Area\text{ = 57.5 cm}^2 \end{gathered}[/tex][tex]Volume=57.5*8=460\text{ }cm^3[/tex]

Volume of the bottom prism:

. Since the price has a rectangular base:

Volume = Area of one base * height between reactangular bases

Area of one base :

[tex]17*13=221\text{ }cm^2[/tex]

Volume:

[tex]221*8=1\text{ }768\text{ }cm^3[/tex]

Total volume of the figure:

Volume of the top + Volume of the bottom = Total volume

[tex]221+1\text{ }768=2\text{ }228\text{ }cm^3[/tex]

NB:

To find any volume of a given prism, start with finding the area of one base, then multiply that area by the height (in other words the sides that link the two bases)