Find the area of the entire region round two decimal places

SOLUTION.
The area of the entire region will be to find the area of the isosceles triangle and the semi-circle.
[tex]\begin{gathered} \text{Area of the triangle is } \\ =\frac{1}{2}\times a\times b\times\sin \theta \\ \text{Where } \\ \text{where a and b are two sides and }\theta=angle\text{ betwe}en\text{ the two sides } \end{gathered}[/tex]Then
[tex]\begin{gathered} =\frac{1}{2}\times8\times8\times\sin 72.6 \\ =32\sin 72.6 \\ =30.54\text{unit}^2 \end{gathered}[/tex]The area of the isosceles triangle is 30.354 square units
We need to obtain the diameter of the semi-circle using the cosine rule
We need to obtain the value of x,
[tex]\begin{gathered} x^2=8^2+8^2-2(8)(8)\cos 72,6 \\ x^2=128-128\cos 72.6 \\ x^2=128-38.27 \\ x^2=89.72 \end{gathered}[/tex]Take square root of both sides, we have
[tex]x=\sqrt[]{89.72}=9.74[/tex]Hence, the diameter is 9.74
Then the radius will be
[tex]r=\frac{9.74}{2}=4.87[/tex]The area of the semi-circle is
[tex]\begin{gathered} =\frac{1}{2}\pi r^2 \\ =\frac{1}{2}\times3.14\times4.87^2 \\ =37.24\text{unit}^2 \end{gathered}[/tex]The area of the semi circle is 37.42 square units
Therefore the area of the region will be
[tex]\begin{gathered} =\text{Area ot triangle + Area of semi circle } \\ =30.54+37.42 \\ =67.96uniits^2 \end{gathered}[/tex]Thus
The area of the region is 67.96 units²