We will simplify the complex expression shown below:
[tex]\frac{\frac{2c}{c+2}+\frac{c-1}{c+1}}{\frac{2c+1}{c+1}}[/tex]
The simplification process is shown below >>>>
[tex]\begin{gathered} \frac{\frac{2c}{c+2}+\frac{c-1}{c+1}}{\frac{2c+1}{c+1}} \\ =\frac{\frac{2c(c+1)+(c-1)(c+2)}{(c+2)(c+1)}}{\frac{2c+1}{c+1}} \\ =\frac{\frac{2c^2+2c+c^2+2c-c-2}{(c+2)(c+1)}}{\frac{2c+1}{c+1}} \\ =\frac{\frac{3c^2+3c-2}{(c+2)(c+1)}}{\frac{2c+1}{c+1}} \\ =\frac{3c^2+3c-2}{(c+2)(c+1)}\times\frac{c+1}{2c+1} \\ =\frac{3c^2+3c-2}{(c+2)\cancel{c+1}}\times\frac{\cancel{c+1}}{2c+1} \\ =\frac{3c^2+3c-2}{(c+2)(2c+1)} \end{gathered}[/tex]
If we multiply out the denominator, we have:
[tex]\begin{gathered} \frac{3c^2+3c-2}{(c+2)(2c+1)} \\ =\frac{3c^2+3c-2}{2c^2+c+4c+2} \\ =\frac{3c^2+3c-2}{2c^2+5c+2} \end{gathered}[/tex]Answer
The numerator is
[tex]3c^2+3c-2[/tex]
The denominator is
[tex]2c^2+5c+2[/tex]