Respuesta :

ANSWER

[tex]\begin{gathered} \sin O=\frac{34}{35} \\ \\ \cos N=\frac{34}{35} \\ \\ \text{ They are equal.} \end{gathered}[/tex]

EXPLANATION

We want to express the trigonometric ratios as fractions in the simplest terms.

The trigonometric ratios SOHCAHTOA for right triangles for sine and cosine are:

[tex]\begin{gathered} \sin\theta=\frac{opposite}{hypotenuse} \\ \\ \cos\theta=\frac{adjacent}{hypotenuse} \end{gathered}[/tex]

Therefore, for the given triangle, we have that:

[tex]\begin{gathered} \sin O=\frac{34}{35} \\ \\ \cos N=\frac{34}{35} \end{gathered}[/tex]

As we see from the equations above, the sine of O and the cosine of N are equal.