Answer:
[tex]x=\frac{-1+\sqrt{10}}{4}\text{ or }x=\frac{-1-\sqrt{10}}{4}[/tex]Explanation:
Given the equation:
[tex]3\left(4x+1\right)^2-5=25[/tex]To solve an equation using the square root property, begin by isolating the term that contains the square.
[tex]\begin{gathered} 3(4x+1)^{2}-5=25 \\ \text{ Add 5 to both sides of the equation} \\ 3(4x+1)^2-5+5=25+5 \\ 3(4x+1)^2=30 \\ \text{ Divide both sides by 3} \\ \frac{3(4x+1)^2}{3}=\frac{30}{3} \\ (4x+1)^2=10 \end{gathered}[/tex]After isolating the variable that contains the square, take the square root of both sides and solve for the variable.
[tex]\begin{gathered} \sqrt{(4x+1)^2}=\pm\sqrt{10} \\ 4x+1=\pm\sqrt{10} \\ \text{ Subtract 1 from both sides} \\ 4x=-1\pm\sqrt{10} \\ \text{ Divide both sides by 4} \\ \frac{4x}{4}=\frac{-1\pm\sqrt{10}}{4} \\ x=\frac{-1\pm\sqrt{10}}{4} \end{gathered}[/tex]Therefore, the solutions to the equation are:
[tex]x=\frac{-1+\sqrt{10}}{4}\text{ or }x=\frac{-1-\sqrt{10}}{4}[/tex]