Part 2:
To determine an equation that is perpendicular to the line equation y = -3/2x + 12, get the negative reciprocal of the slope of the line equation.
[tex]\begin{gathered} \text{Given slope: }m=-\frac{3}{2} \\ \\ \text{The negative reciprocal is} \\ -\Big(-\frac{3}{2}\Big)^{-1}=\frac{2}{3} \\ \\ \text{We can now assume that any line in the form} \\ y=\frac{2}{3}x+b \\ \text{where }b\text{ is the y-intercept} \\ \text{is perpendicular to the line }y=-\frac{3}{2}x+12 \end{gathered}[/tex]Part 3:
An equation that is parallel to the line y = -3/2x + 12, is a line equation that will have the same slope as the original line.
Given that the slope of the line is m = -3/2, then any line equation in the form
[tex]\begin{gathered} y=-\frac{3}{2}x+b \\ \text{where} \\ b\text{ is the y-intercept} \end{gathered}[/tex]