Given the absolute function;
[tex]f(x)=|-3x-1|[/tex](a)
[tex]\begin{gathered} f(-1)=|-3x-1| \\ f(-1)=|-3(-1)-1| \\ f(-1)=|3-1| \\ f(-1)=|2| \\ f(-1)=2 \end{gathered}[/tex](b)
[tex]\begin{gathered} f(0)=|-3(0)-1| \\ f(0)=|0-1| \\ f(0)=|-1| \end{gathered}[/tex]Here, we recall the absolute rule that;
[tex]|-a|=a[/tex]Thus, we have;
[tex]f(0)=|-1|=1[/tex](c)
[tex]\begin{gathered} f(3)=|-3(3)-1| \\ f(3)=|-9-1| \\ f(3)=|-10| \\ f(3)=10 \end{gathered}[/tex]